BeLEARN@EPFL

In order to strengthen and extend EPFL’s contribution to the digital transformation of education, the Center LEARN has joined the partnership between the Canton of Bern’s Department of Education and Culture and five universities to form BeLEARN: a competence center whose objective is to advance digital education through a translational approach.

Within this framework, the three Bernese institutions – the University of Bern, the Bern University of Applied Sciences and the Bern University of Teacher Education – as well as the EPFL and the Swiss Federal University for Vocational Education and Training (SFUVET) are combining their competencies with a multidisciplinary network of various educational research teams working on all levels of the Swiss educational system. Start-ups specialized in digital education participate in BeLEARN through a strategic partnership with the Swiss EdTech Collider.

BeLEARN partners collaborate on research projects based directly on specific needs identified in the field and transpose their results into the implementation of practical solutions along three main axes: the development of digital skills in education, the pedagogical use of digital resources and tools, and learning analytics (data science applied to education).

Within EPFL, various projects are conducted within the framework of BeLEARN:

 

  • Grafmilis: The project concerns two platforms for the analysis and remediation of learning difficulties in writing, Dynamilis and Grafos, respectively developed at PHBern and EPFL. (CHILI; contact person: Pierre Dillenbourg)
  • Teaching engineering and computing ethics with Deepfakes: The project focuses on an experimental study to evaluate pedagogical approaches to develop the ethical reasoning of engineering students (CAPE; contact person: Roland Tormey)
  • FREE – Federal Library of Open Educational Resources: The FREE project aims at designing and implementing a federal library of open educational resources for different levels and curricula in Switzerland and beyond. It is complementary to the Swiss Digital Skills Academy initiative (d-skills.ch). (REACT; contact person: Denis Gillet)
  • Learning Companion: The Learning Companion is an online tool for students to develop effective learning strategies. The project investigates the usefulness of the tool with a pre-university audience and develops a multilingual version (CEDE; contact person: Patrick Jermann)
  • Computational problem solving in MINT mobil : The MINT mobil program of the Department of Compulsory Education of the Canton of Bern includes a robotics mission, developed at the EPFL. This project aims at developing the robotics mission and measuring the impact on students and teachers. (MOBOTS; contact person: Susanne Grabowski)
  • Labnet Booster project: The Labnet project aims to assess the needs, expectations, and potential applications of networking physical and virtual laboratories. (Contact person: Jessica Dehler Zufferey)

An internal call for projects for 2023/2024 is open until 31.10.2022

Contact(s):
Jessica Dehler Zufferey - jessica.dehlerzufferey@epfl.ch
Website:

National Research Programme (NRP77): Assessing computational thinking skills

Computational thinking (CT) is the ability to develop a problem-solving methodology that complements computers. This project studies the extent to which Swiss students are able to do so, and develops tools to measure these skills.

Portrait / Project description

We will assess the computational thinking (CT) skills in Swiss compulsory schools in three steps. First, we will design an age-based competency model for CT and identify typical problems found in each age group. In a second step, we will develop an intelligent tutoring and assessment system that can help students solve problems while measuring their computational thinking skills. In a third phase, we will test this educational robotics approach in compulsory schools in the cantons of St. Gallen, Vaud and Ticino. A special focus will be placed on the Swiss educational robot Thymio II, which is currently in the process of being introduced in schools in these cantons.

Background

Computational thinking is the ability to break down problems into their different parts, to develop solution strategies and to present these in an algorithmic way which can be understood and executed both by humans and computers. Computational thinking is recognized as a central element in various national and cantonal education strategies. Unfortunately, very few tools are available to measure the impact of the implemented measures.

Aim

The aim of this project is to provide policy-makers and teachers with tools and protocols for the large-scale assessment of competencies in compulsory education. The project especially aims to define a competency model, to develop an intelligent tutoring and assessment system, and to test the developed tools in the cantons of St. Gallen, Vaud and Ticino.

Relevance

The results will make it possible to evaluate the developed competency model; notably to determine how it can be used in schools, and how it is accepted by students, teachers, school principals and cantonal services. The findings will also enable the evaluation of the effectiveness of the different approaches to teaching CT skills. This project therefore provides a tool to appraise the impact of educational initiatives that focus on computational thinking.

Original title

Assessing the development of computational thinking skills through an intelligent tutoring system: an exploratory study in the cantons of St Gallen, Vaud and Ticino

 

Project leaders

Prof. Francesco Mondada, Mobile Robotic Systems Group, EPFL

Prof. Luca Maria Gambardella, Faculty of Informatics, USI Lugano

Dr. Alberto Piatti, Dipartimento formazione e apprendimento, SUPSI Locarno

Dr. Dorit Assaf, Didaktik der Informatik und Medienbildung, Pädagogische Hochschule Fachhochschule Nordwestschweiz (FHNW), Windisch

Teaching in times of covid-19

The teams in LEARN provided support for teachers at different levels in their efforts to setup and constantly adapt their distance and blended teaching. LEARN teams worked with teachers to face the sudden switch to distance teaching during the lockdown. Part of the team worked with EPFL teachers, while others focused on teachers in public primary schools.

The teams in LEARN provided support for teachers at different levels in their efforts to setup and constantly adapt their distance and blended teaching. LEARN teams worked with teachers to face the sudden switch to distance teaching during the lockdown. Part of the team worked with EPFL teachers, while others focused on teachers in public primary schools.

Our aim is to make these resources available to all teachers across institutions and levels. Some of these resources are translated in English and in French.

Support for teachers at EPFL

As a means to continously minimize the risk of transmission of covid-19, the Center for Digital Education (CEDE) and the Teaching Support Center (CAPE) have set up documentation, workhops and a helpdesk to support EPFL teachers in mixing online and on-campus teaching modes. Their ressources are regularly updated.

 

Support for teachers in primary schools

Since 2018, the LEARN Center has been working with the Department of Education, Youth and Culture (DFJC) of Canton Vaud on the “Digital Education” project, in collaboration with HEP Vaud and UNIL.  The phase of distance learning offered a particular challenge to teachers: to ensure continuity of learning for students and to maintain the link with families. The LEARN team wished to support them in the definition and implementation of this new task, with the tools at their disposal while remobilising the content already seen in the training that is part of the project.

We proposed, in collaboration with HEP Vaud, online sessions starting one week after the beginning of lockdown in 2020. These short and operational sessions helped to co-construct remote teaching. The ressources shared here are in French:

  1. Défis 1 – Démarrer l’enseignement à distance
  2. Défi 2 – Organiser ma première classe virtuelle
  3. Défi 3 – Animer ma classe virtuelle
  4. Défi 4 – Interroger ma classe à distance
  5. Défi 5 – Lecture d’histoires à distance
  6. Défi 6 – Parler du covid-19 avec les enfants
  7. Défi 7 – Aborder le covid-19 en classe

LEARN collaborated with Edit Change Management to create a trilogy of picture books, called Oscar & Zoe, to adress the digital challenges related to the pandemic (e.g. fake news, screen time management). Here is the news article with links towards the free download in English, French and German.

 

 

Contact(s):
Support team for EPFL teachers - flexible-teaching@epfl.ch
Ressources created for primary school teachers - gregory.liegeois@epfl.ch

Research on Education in Times of Covid-19

The two main questions our research teams dealt with concerning covid-19 and education were: How does distance teaching during lockdown affect students and teachers? How can we collect the evidence in order to inform decision-makers?

1. Research into remote teaching during the lockdown

As a reaction to the pandemic, our research teams worked to provide evidence about the impact of covid-19 related measures on education by studying teaching at EPFL and in public schools during the lockdown.

1.1. Study on EPFL teachers adapting their teaching

A study on teacher adaptability was ongoing at the moment when covid-19 hit tertiary education in February 2020. It was quickly re-designed in order to capture teachers’ adaptability in the situation of forced change. The analysis introduces perspectives of pedagogical innovation and touches upon social components of learning which, during the lockdown, have left an impact on the meaning of professional teaching role. The recording and slides of a presentation of this study in a lunch&LEARN session are linked on the left.

1.2. Study on teachers’ experiences with remote teaching in Canton Vaud

More than 5500 teachers from the Canton Vaud have participated in the study. The analysis of the factors associated with effective distance learning reveal that there are three types of factors that play a role: contextual factors (student, teacher and school equipment;  as well as the technical and socio-emotional support available), individual factors (teacher and student autonomy, competence and motivation) and pedagogical factors (practices and tools). The complete report is available here.

2. Collecting research evidence on the impact of covid-19 on education

The pandemic has had a major impact on education, not only because of the social isolation during the lockdown, but also because of the need to organise education differently after reopening of schools. New practices have emerged. Educational researchers have quickly accompanied the emergence of these new practices with research activities. Many have conducted studies to document and investigate the effects of the coronavirus pandemic on education. These studies can make a significant contribution to understanding what has happened, but also to preparing future scenarios, based on evidence.

But how to gather all these studies in order to make them accessible and useful for the entire research community? The Swiss Conference of Cantonal Ministers of Education (EDK/CDIP), the State Secretariat for Education, Research and Innovation (SERI/SBFI/SEFRI) and the EPFL Center for Learning Sciences (LEARN) teamed up to propose a platform for the sharing of research on Covid-19 impact on education in Switzerland.

2.1. Open repository

We initiated an open online repository of studies addressing Covid-19 impact on education in Switzerland and were able to gather more than 60 studies. Please feel free to use the repository for your research and share it with colleagues.

Link to access items on the platform: https://go.epfl.ch/repository_access
Link to add your study to the repository: https://go.epfl.ch/repository_fill

2.2. Online informal conference

In December 2020, more than 100 researchers participated in an informal conference to share the current knowledge about covid-19 in education. 17 studies were presented by colleagues from UniFR, FORS, EHL, UniZH, PHZG, FSO, SFIVET, UZH, UniGE, UniDistance and EPFL. Full programme

 

Studies on the impact of covid-19 on education

Digital Education (EduNum)

Flagship project of the Center LEARN, its main objective is to train students to master the three pillars of digital education (computer science, uses and media).

The Digital Education project dubbed “EduNum” is a large-scale educational reform initiative in which the Center LEARN has been mandated by the Department of Education, Youth and Culture (DFJC) of the Canton of Vaud to pilot the introduction of this new subject across the entire administrative region’s school system.

Flagship project of the Center, its main objective is to train students, digital citizens of tomorrow, to master the three pillars of digital education (computer science, uses and media), to encourage creativity, to ensure the emancipation of pupils and to enhance the potential for educational diversification.

These ambitions are supported by collaboration between the major Vaud institutions specializing in education, in particular, the HEP Vaud, the University of Lausanne, the Educational Department (DP) of the canton, and EPFL via its Center LEARN’s experts.

This project is based on a 2-year continuous training of teachers, with a pilot phase aimed at measuring and making the necessary adjustments before deployment.

More details and updates on the project’s evolution are posted here on a regular basis.

Want to find out more?

PharmaSim

Interactive Learning environments for pharmacy assistants can encourage the students to test their knowledge in consultation situations without the fear of making mistakes. Moreover, they can be used to collect meaningful data to analyze the student’s behaviors and have the potential to provide exclusive insights to teachers.

Students shall be offered an interactive learning environment (ILE) that allows them to explore the subject matter through a realistic consultation scenario.

The ILE mitigates the consequences of mistakes and offers a motivating learning opportunity. Students shall be trained to actively engage in counselling sessions, to react (critically) to the information at their disposal and to identify cross-selling opportunities.

Pharmacy assistants apply the learning content they have acquired in school in consultation situations at the pharmacy. Teaching strategies must therefore foster the transfer of theoretical knowledge to applied competencies. Role plays are one way to simulate real world scenarios. However, many students tend to avoid risks in group work settings. Furthermore, it is difficult to engage learners in learning activities regarding subject matters they can not relate to. Against this background, PharmaSim offers a protected learning environment and enhances motivation through gamification.

Contact(s):
Christian Giang - christian.giang@epfl.ch
Peter Buhlmann - peter.buhlmann@epfl.ch
Website:
Want to find out more?

VirtualLabs

We develop learning opportunities around Interactive Simulations that allow students to complete experiments online and explore concepts while sitting at their desk…

The use of interactive learning environments (ILEs) to engage students in inquiry- and scenario-based learning is of great pedagogical potential. Especially when such approaches are not a viable option in the physical world (e.g. because they would be too dangerous, time-consuming, or expensive), ILEs represent an interesting alternative for students to learn through exploration and inquiry as a supplement to deductive reasoning.

HeatingSim is a simulation for heating technicians, which helps to impart the technical functionalities and the interdependencies of the different components of complex heating systems.

ChemLab allows laboratory technicians to explore concepts and theories by performing experiments online – without the need for a physical science lab. The project uses the PhET Interactive Simulations developed by the University of Colorado Boulder.

Contact(s):
Peter Buhlmann - peter.buhlmann@epfl.ch
Christian Giang - christian.giang@epfl.ch
Website:
Want to find out more?

MOOC – Discovering Digital Sciences with Thymio

Taking your first steps in the digital world is possible!

The MOOC titled “The Thymio robot as a tool for discovering digital sciences” is the result of a fruitful collaboration between education experts which offers a smooth introduction into the fascinating world of digital technology.

To get started, you don’t need to have a Thymio robot at hand: thanks to its virtual version, you can immediately get to the heart of the matter.

As for its physical version, it will allow you to experience all aspects of interaction and programming that this educational robot has to offer.

The educational materials (videos, texts, images, exercises, quizzes and many more resources) supplied in this MOOC have been carefully selected with the aim to provide learners with a captivating journey into the digital world. What’s more, all the educational materials can be transposed and applied within a classroom context.

 

The French version of this MOOC was jointly designed by EPFL and Inria and adapted into German through a cross-institutional and cross-organizational collaboration (ETHZ, PH Luzern, SUPSI, PH Bern, PH St. Gallen, PH Schwyz, amXa, Bischoff). It is available on several platforms such as fun-mooc.fr, edx.org, courseware.epfl.ch.  The Italian version is under development.

The course is divided into six chapters:

Chapter 1: Introduction to Computer Science and Robotics

Chapter 2: Thymio

Chapter 3: First steps in programming with Thymio (VPL)

Chapter 4: Programming Thymio with Scratch

Chapter 5: Programming Thymio with Aseba Studio

Chapter 6: Educational activities with Thymio

The first chapter introduces the basic concepts of computer science and robotics. The second chapter is an introduction to the Thymio robot. Chapters 3, 4 and 5 cover programming the robot in different environments with increasing complexity. Finally, Chapter 6 is a practical application of the elements presented in the MOOC.

Want to find out more?

E-Puck – The Ultimate Tool to Teach Embedded Robotics!

After more than 15 years and multiple generations, the Swiss-designed e-puck is still used worldwide by more than 4’000 universities and research centers. This modular mobile robot is a key tool to teach mobile robotics.

The e-puck is an educational robot that helps generations of students learn about embedded systems and robotics. First developed at EPFL in 2004 by Francesco Mondada and Michael Bonani, a new version was released in 2018, produced by GCtronic in Ticino.

The e-puck contains 15 sensors including 4 microphones, a color camera, 8 infrared proximity sensors, a time-of-flight sensor, an inertial measurement unit, in addition to speakers, 8 red LEDs, 4 RGB LEDs, and many more features to explore. Its simple structure with 3 contact points and two wheels makes it mobile, leading to a wide range of possible uses. All of the necessary resources are available on the GCtronic wiki for e-puck2!

Although the e-puck is mainly used for educational purposes, its completeness and modularity led it to be part of research in various other fields including collective and evolutionary robotics, but also in artistic performances!

Contact(s):
Daniel Burnier - daniel.burnier@epfl.ch
Matthieu Broisin - matthieu.broisin@epfl.ch
Website:
Want to find out more?

Thymio: The State-of-the-art in Mobile Educational Robotics

Thymio is an open-source educational robot designed by researchers from EPFL, in collaboration with ECAL, and produced by Mobsya, a nonprofit association whose mission is to offer comprehensive, engaging STEAM journeys to learners of all ages.

The increase of digitalization offers an unprecedented opportunity to make digital education accessible to everyone on an equal opportunity basis. Many countries such as Switzerland, France, Belgium, Canada, and Tunisia have already included programming, computational thinking and educational robotics in their compulsory curricula, with more and more policymakers following suit each year.

The Thymio mobile robot can already be seen equipping schools across primary, secondary, and University levels. It is produced and distributed by Mobsya, a nonprofit association that continues to develop Thymio into a complete digital education concept centered around three core pillars:

 

  • Sustainable, open-source platform: The Thymio educational robot is a small interactive teaching device, based entirely on open-source hardware and software. The robot is compact, very robust and features numerous LEDs that provide immediate feedback on the robot’s perceptions, touch-sensitive keys, an accelerometer, two independent motors, a microphone, speakers and much more. It is designed and suitable for use in all educational contexts from primary schools to universities.
  • Simple programming interfaces: Thymio enables you to discover the world of robotics and to learn a robot’s language. Everyone can grow at their own pace, starting with six plug-and-play pre-programmed modes and advancing through increasingly sophisticated programming options (visual, block-based, full text code) in order to develop computational thinking and coding skills, as well as transversal skills, such as communication, collaboration, critical thinking and creativity.
  • Rich learning resources and ecosystem: One of the key strengths of Thymio in supporting compulsory education is that the platform comes with exciting learning journeys based on ready-to-use educational activities that empower, inspire, and raise curiosity in users of all ages, whose expertise may range from novice to proficient. Building these diverse STEAM and so-called 21st century transversal skills through multi-faceted learning journeys, such as those shared among members of the Thymio and Mobsya community hub, encourages active involvement in digital society.

Come and join the community of teachers and supporters of educational robotics with Thymio!

Contact(s):
Website:
Want to find out more?

Cellulo

The Cellulo robots allow visualizing in a tangible manner what is intangible in learning, and mediating learning activities.

The National Centre of Competence in Research (NCCR) in Robotics is an organization funded by the Swiss National Science Foundation (SNSF) which brings together researchers from all over the country in the development of new human-centered robotic technologies with the objective of improving the quality of life.

As part of the research projects undertaken with the support of the NCCR Robotics, the teams of the Computer-Human Interaction Lab for Learning & Instruction (CHILI) and the Laboratory of Intelligent Systems (LSRO) have developed the Cellulo robot.

Between 2014 and 2018 (corresponding to the second phase of the NCCR) the Cellulo project focused on the development of a modular, manually controlled robot designed to integrate cross-curricularly into all types of teaching and subjects.

In its first iteration, Cellulo allowed for rich interactions with learners, offered a wide range of pedagogical activities, and seamlessly integrated into classrooms and universities.

This versatility paved the way for the exploration of three application areas:

 

Gamified rehabilitation

Learning activities

Human-robotic swarm interaction for education

 

Cellulo for “gamified” rehabilitation:
This project aims to provide a tool for rehabilitation that is playful, practical, easy to use and intuitive by using these tangible robots as agents and game objects.

For example, the first game developed by the research team is based on the classic Pacman and allows the design of exercises targeting arm motor skills. This game is designed iteratively with the participation of stroke, brachial plexus and cerebral palsy patients (18 in total) and seven therapists in four different therapy centers. A number of game elements are designed to adjust speed, accuracy, range of motion and level of challenge.

 

Swarm human-robotic interactions for education: 

In 2021, with funding provided by the “Grassroot Project” facility established by the NCCR Robotics, research teams from the Computer-Human Interaction Lab for Learning & Instruction and the Reconfigurable Robotics Lab collaborated to further develop the Cellulo concept.

Leveraging the expertise of these two labs and exploiting the results collected around Cellulo, the team developed the Cellulo Modulo, a revised and improved version of its predecessor aimed at increasing its integration capacity.

This new design proposes a configuration divided into three modules: the main module containing the means of locomotion and control between the modules, a module containing the battery and finally, the module known as “user interaction” which allows the Cellulo Modulo to be paired with other tools or objects. In particular, the Cellulo-Mori allows the connection of the Modular Origami Robot (Mori) designed by the RRL to the interaction module of the Modulo Cellulo.

 

Development of educational activities: 

 

  • Writing:

Within this application area, CHILI researchers are developing pedagogical activities that take advantage of the Cellulo’s capabilities. In particular, they are studying the role of tangible interactive robots in supporting letter writing for children with attention and visual-motor coordination problems.

Three features of the Cellulo robotic platform, specifically haptic information, autonomous movement, and synchronized behavior of multiple robots, allow for increased multi-sensory feedback through the letter writing process. The haptic features allow each child to receive instant individual feedback, the autonomous movement causes the robot to reproduce the layout while the synchronized behavior of the robots allows for collaborative game design.

  • Windfield:

This learning activity developed to demonstrate the potential of Cellulo in the classroom as part of standard school activities, is a so-called “semi-gamified” activity where students learn how atmospheric pressure results in winds through a robotic simulation of “hot air balloons” over Europe. There are high and low pressure points of different intensities that create outward and inward winds respectively at a certain distance; the strength of these winds decreases with the square of the distance. The wind force at a given point on the map is then calculated as the vector sum of the wind forces created by all pressure points.

  • Coordinate Systems:

This activity was developed to teach children the usefulness of a coordinate system to describe the position of an object. Through a game in groups of 3, students seek guidance to find an astronaut lost in space.

 

 

Want to find out more?

Roteco: Robotic Teacher Community

The goal of the Roteco project is to create a vibrant community of schoolteachers interested in the field of robotics and computational thinking. Sharing classroom practices around educational robotics, informing about new developments in the field and opportunities for training are the foundation. To support the growth of this robotic teacher community the Roteco project designed, developed and has community managers for the www.roteco.ch web platform. If you are a teacher or have interest in the world of educational robotics come and join us!

Today we live in a digital society that requires the acquisition of new skills related to computer science, such as computational thinking or coding skills as well as cross-curricular skills, such as communication, collaboration and creativity.

One possible tool to foster these skills in schools is educational robotics. However, the question is how to bring educational robotics into schools?

This is where Roteco comes in. We aim to create a community of teachers interested in educational robotics and offer training in this field in order to facilitate the sharing and uptake of educational robotics activities. As part of the project, a teacher training concept, an online platform for collaboration and various teaching resources were developed.

 

Want to find out more?